/src/arrow/cpp/src/arrow/vendored/fast_float/simple_decimal_conversion.h
Line | Count | Source (jump to first uncovered line) |
1 | | #ifndef FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H |
2 | | #define FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H |
3 | | |
4 | | /** |
5 | | * This code is meant to handle the case where we have more than 19 digits. |
6 | | * |
7 | | * It is based on work by Nigel Tao (at https://github.com/google/wuffs/) |
8 | | * who credits Ken Thompson for the design (via a reference to the Go source |
9 | | * code). |
10 | | * |
11 | | * Rob Pike suggested that this algorithm be called "Simple Decimal Conversion". |
12 | | * |
13 | | * It is probably not very fast but it is a fallback that should almost never |
14 | | * be used in real life. Though it is not fast, it is "easily" understood and debugged. |
15 | | **/ |
16 | | #include "ascii_number.h" |
17 | | #include "decimal_to_binary.h" |
18 | | #include <cstdint> |
19 | | |
20 | | namespace arrow_vendored { |
21 | | namespace fast_float { |
22 | | |
23 | | namespace { |
24 | | |
25 | | // remove all final zeroes |
26 | 0 | inline void trim(decimal &h) { |
27 | 0 | while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) { |
28 | 0 | h.num_digits--; |
29 | 0 | } |
30 | 0 | } |
31 | | |
32 | | |
33 | | |
34 | 0 | uint32_t number_of_digits_decimal_left_shift(const decimal &h, uint32_t shift) { |
35 | 0 | shift &= 63; |
36 | 0 | const static uint16_t number_of_digits_decimal_left_shift_table[65] = { |
37 | 0 | 0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, |
38 | 0 | 0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, |
39 | 0 | 0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, |
40 | 0 | 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0, |
41 | 0 | 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA, |
42 | 0 | 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, |
43 | 0 | 0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, |
44 | 0 | 0x051C, 0x051C, |
45 | 0 | }; |
46 | 0 | uint32_t x_a = number_of_digits_decimal_left_shift_table[shift]; |
47 | 0 | uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1]; |
48 | 0 | uint32_t num_new_digits = x_a >> 11; |
49 | 0 | uint32_t pow5_a = 0x7FF & x_a; |
50 | 0 | uint32_t pow5_b = 0x7FF & x_b; |
51 | 0 | const static uint8_t |
52 | 0 | number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = { |
53 | 0 | 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, |
54 | 0 | 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, |
55 | 0 | 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, |
56 | 0 | 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, |
57 | 0 | 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, |
58 | 0 | 9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, |
59 | 0 | 3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, |
60 | 0 | 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, |
61 | 0 | 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, |
62 | 0 | 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, |
63 | 0 | 4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, |
64 | 0 | 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, |
65 | 0 | 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, |
66 | 0 | 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, |
67 | 0 | 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2, |
68 | 0 | 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, |
69 | 0 | 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, |
70 | 0 | 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, |
71 | 0 | 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2, |
72 | 0 | 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0, |
73 | 0 | 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, |
74 | 0 | 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, |
75 | 0 | 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, |
76 | 0 | 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, 2, |
77 | 0 | 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5, |
78 | 0 | 0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, |
79 | 0 | 3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, |
80 | 0 | 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, |
81 | 0 | 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, |
82 | 0 | 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, |
83 | 0 | 9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, |
84 | 0 | 5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, |
85 | 0 | 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, |
86 | 0 | 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, |
87 | 0 | 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, |
88 | 0 | 9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, |
89 | 0 | 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, |
90 | 0 | 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, |
91 | 0 | 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, |
92 | 0 | 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4, |
93 | 0 | 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, |
94 | 0 | 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, |
95 | 0 | 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, |
96 | 0 | 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5, |
97 | 0 | 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1, |
98 | 0 | 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, |
99 | 0 | 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9, |
100 | 0 | 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0, |
101 | 0 | 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6, 2, |
102 | 0 | 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1, |
103 | 0 | 8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, |
104 | 0 | 1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, |
105 | 0 | 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, |
106 | 0 | 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, |
107 | 0 | 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5, |
108 | 0 | }; |
109 | 0 | const uint8_t *pow5 = |
110 | 0 | &number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a]; |
111 | 0 | uint32_t i = 0; |
112 | 0 | uint32_t n = pow5_b - pow5_a; |
113 | 0 | for (; i < n; i++) { |
114 | 0 | if (i >= h.num_digits) { |
115 | 0 | return num_new_digits - 1; |
116 | 0 | } else if (h.digits[i] == pow5[i]) { |
117 | 0 | continue; |
118 | 0 | } else if (h.digits[i] < pow5[i]) { |
119 | 0 | return num_new_digits - 1; |
120 | 0 | } else { |
121 | 0 | return num_new_digits; |
122 | 0 | } |
123 | 0 | } |
124 | 0 | return num_new_digits; |
125 | 0 | } |
126 | | |
127 | 0 | uint64_t round(decimal &h) { |
128 | 0 | if ((h.num_digits == 0) || (h.decimal_point < 0)) { |
129 | 0 | return 0; |
130 | 0 | } else if (h.decimal_point > 18) { |
131 | 0 | return UINT64_MAX; |
132 | 0 | } |
133 | | // at this point, we know that h.decimal_point >= 0 |
134 | 0 | uint32_t dp = uint32_t(h.decimal_point); |
135 | 0 | uint64_t n = 0; |
136 | 0 | for (uint32_t i = 0; i < dp; i++) { |
137 | 0 | n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0); |
138 | 0 | } |
139 | 0 | bool round_up = false; |
140 | 0 | if (dp < h.num_digits) { |
141 | 0 | round_up = h.digits[dp] >= 5; // normally, we round up |
142 | | // but we may need to round to even! |
143 | 0 | if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) { |
144 | 0 | round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1])); |
145 | 0 | } |
146 | 0 | } |
147 | 0 | if (round_up) { |
148 | 0 | n++; |
149 | 0 | } |
150 | 0 | return n; |
151 | 0 | } |
152 | | |
153 | | // computes h * 2^-shift |
154 | 0 | void decimal_left_shift(decimal &h, uint32_t shift) { |
155 | 0 | if (h.num_digits == 0) { |
156 | 0 | return; |
157 | 0 | } |
158 | 0 | uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift); |
159 | 0 | int32_t read_index = int32_t(h.num_digits - 1); |
160 | 0 | uint32_t write_index = h.num_digits - 1 + num_new_digits; |
161 | 0 | uint64_t n = 0; |
162 | |
|
163 | 0 | while (read_index >= 0) { |
164 | 0 | n += uint64_t(h.digits[read_index]) << shift; |
165 | 0 | uint64_t quotient = n / 10; |
166 | 0 | uint64_t remainder = n - (10 * quotient); |
167 | 0 | if (write_index < max_digits) { |
168 | 0 | h.digits[write_index] = uint8_t(remainder); |
169 | 0 | } else if (remainder > 0) { |
170 | 0 | h.truncated = true; |
171 | 0 | } |
172 | 0 | n = quotient; |
173 | 0 | write_index--; |
174 | 0 | read_index--; |
175 | 0 | } |
176 | 0 | while (n > 0) { |
177 | 0 | uint64_t quotient = n / 10; |
178 | 0 | uint64_t remainder = n - (10 * quotient); |
179 | 0 | if (write_index < max_digits) { |
180 | 0 | h.digits[write_index] = uint8_t(remainder); |
181 | 0 | } else if (remainder > 0) { |
182 | 0 | h.truncated = true; |
183 | 0 | } |
184 | 0 | n = quotient; |
185 | 0 | write_index--; |
186 | 0 | } |
187 | 0 | h.num_digits += num_new_digits; |
188 | 0 | if (h.num_digits > max_digits) { |
189 | 0 | h.num_digits = max_digits; |
190 | 0 | } |
191 | 0 | h.decimal_point += int32_t(num_new_digits); |
192 | 0 | trim(h); |
193 | 0 | } |
194 | | |
195 | | // computes h * 2^shift |
196 | 0 | void decimal_right_shift(decimal &h, uint32_t shift) { |
197 | 0 | uint32_t read_index = 0; |
198 | 0 | uint32_t write_index = 0; |
199 | |
|
200 | 0 | uint64_t n = 0; |
201 | |
|
202 | 0 | while ((n >> shift) == 0) { |
203 | 0 | if (read_index < h.num_digits) { |
204 | 0 | n = (10 * n) + h.digits[read_index++]; |
205 | 0 | } else if (n == 0) { |
206 | 0 | return; |
207 | 0 | } else { |
208 | 0 | while ((n >> shift) == 0) { |
209 | 0 | n = 10 * n; |
210 | 0 | read_index++; |
211 | 0 | } |
212 | 0 | break; |
213 | 0 | } |
214 | 0 | } |
215 | 0 | h.decimal_point -= int32_t(read_index - 1); |
216 | 0 | if (h.decimal_point < -decimal_point_range) { // it is zero |
217 | 0 | h.num_digits = 0; |
218 | 0 | h.decimal_point = 0; |
219 | 0 | h.negative = false; |
220 | 0 | h.truncated = false; |
221 | 0 | return; |
222 | 0 | } |
223 | 0 | uint64_t mask = (uint64_t(1) << shift) - 1; |
224 | 0 | while (read_index < h.num_digits) { |
225 | 0 | uint8_t new_digit = uint8_t(n >> shift); |
226 | 0 | n = (10 * (n & mask)) + h.digits[read_index++]; |
227 | 0 | h.digits[write_index++] = new_digit; |
228 | 0 | } |
229 | 0 | while (n > 0) { |
230 | 0 | uint8_t new_digit = uint8_t(n >> shift); |
231 | 0 | n = 10 * (n & mask); |
232 | 0 | if (write_index < max_digits) { |
233 | 0 | h.digits[write_index++] = new_digit; |
234 | 0 | } else if (new_digit > 0) { |
235 | 0 | h.truncated = true; |
236 | 0 | } |
237 | 0 | } |
238 | 0 | h.num_digits = write_index; |
239 | 0 | trim(h); |
240 | 0 | } |
241 | | |
242 | | } // end of anonymous namespace |
243 | | |
244 | | template <typename binary> |
245 | 0 | adjusted_mantissa compute_float(decimal &d) { |
246 | 0 | adjusted_mantissa answer; |
247 | 0 | if (d.num_digits == 0) { |
248 | | // should be zero |
249 | 0 | answer.power2 = 0; |
250 | 0 | answer.mantissa = 0; |
251 | 0 | return answer; |
252 | 0 | } |
253 | | // At this point, going further, we can assume that d.num_digits > 0. |
254 | | // |
255 | | // We want to guard against excessive decimal point values because |
256 | | // they can result in long running times. Indeed, we do |
257 | | // shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22 |
258 | | // which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not |
259 | | // fine (runs for a long time). |
260 | | // |
261 | 0 | if(d.decimal_point < -324) { |
262 | | // We have something smaller than 1e-324 which is always zero |
263 | | // in binary64 and binary32. |
264 | | // It should be zero. |
265 | 0 | answer.power2 = 0; |
266 | 0 | answer.mantissa = 0; |
267 | 0 | return answer; |
268 | 0 | } else if(d.decimal_point >= 310) { |
269 | | // We have something at least as large as 0.1e310 which is |
270 | | // always infinite. |
271 | 0 | answer.power2 = binary::infinite_power(); |
272 | 0 | answer.mantissa = 0; |
273 | 0 | return answer; |
274 | 0 | } |
275 | 0 | static const uint32_t max_shift = 60; |
276 | 0 | static const uint32_t num_powers = 19; |
277 | 0 | static const uint8_t powers[19] = { |
278 | 0 | 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, // |
279 | 0 | 33, 36, 39, 43, 46, 49, 53, 56, 59, // |
280 | 0 | }; |
281 | 0 | int32_t exp2 = 0; |
282 | 0 | while (d.decimal_point > 0) { |
283 | 0 | uint32_t n = uint32_t(d.decimal_point); |
284 | 0 | uint32_t shift = (n < num_powers) ? powers[n] : max_shift; |
285 | 0 | decimal_right_shift(d, shift); |
286 | 0 | if (d.decimal_point < -decimal_point_range) { |
287 | | // should be zero |
288 | 0 | answer.power2 = 0; |
289 | 0 | answer.mantissa = 0; |
290 | 0 | return answer; |
291 | 0 | } |
292 | 0 | exp2 += int32_t(shift); |
293 | 0 | } |
294 | | // We shift left toward [1/2 ... 1]. |
295 | 0 | while (d.decimal_point <= 0) { |
296 | 0 | uint32_t shift; |
297 | 0 | if (d.decimal_point == 0) { |
298 | 0 | if (d.digits[0] >= 5) { |
299 | 0 | break; |
300 | 0 | } |
301 | 0 | shift = (d.digits[0] < 2) ? 2 : 1; |
302 | 0 | } else { |
303 | 0 | uint32_t n = uint32_t(-d.decimal_point); |
304 | 0 | shift = (n < num_powers) ? powers[n] : max_shift; |
305 | 0 | } |
306 | 0 | decimal_left_shift(d, shift); |
307 | 0 | if (d.decimal_point > decimal_point_range) { |
308 | | // we want to get infinity: |
309 | 0 | answer.power2 = binary::infinite_power(); |
310 | 0 | answer.mantissa = 0; |
311 | 0 | return answer; |
312 | 0 | } |
313 | 0 | exp2 -= int32_t(shift); |
314 | 0 | } |
315 | | // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2]. |
316 | 0 | exp2--; |
317 | 0 | constexpr int32_t minimum_exponent = binary::minimum_exponent(); |
318 | 0 | while ((minimum_exponent + 1) > exp2) { |
319 | 0 | uint32_t n = uint32_t((minimum_exponent + 1) - exp2); |
320 | 0 | if (n > max_shift) { |
321 | 0 | n = max_shift; |
322 | 0 | } |
323 | 0 | decimal_right_shift(d, n); |
324 | 0 | exp2 += int32_t(n); |
325 | 0 | } |
326 | 0 | if ((exp2 - minimum_exponent) >= binary::infinite_power()) { |
327 | 0 | answer.power2 = binary::infinite_power(); |
328 | 0 | answer.mantissa = 0; |
329 | 0 | return answer; |
330 | 0 | } |
331 | | |
332 | 0 | const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1; |
333 | 0 | decimal_left_shift(d, mantissa_size_in_bits); |
334 | |
|
335 | 0 | uint64_t mantissa = round(d); |
336 | | // It is possible that we have an overflow, in which case we need |
337 | | // to shift back. |
338 | 0 | if(mantissa >= (uint64_t(1) << mantissa_size_in_bits)) { |
339 | 0 | decimal_right_shift(d, 1); |
340 | 0 | exp2 += 1; |
341 | 0 | mantissa = round(d); |
342 | 0 | if ((exp2 - minimum_exponent) >= binary::infinite_power()) { |
343 | 0 | answer.power2 = binary::infinite_power(); |
344 | 0 | answer.mantissa = 0; |
345 | 0 | return answer; |
346 | 0 | } |
347 | 0 | } |
348 | 0 | answer.power2 = exp2 - binary::minimum_exponent(); |
349 | 0 | if(mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) { answer.power2--; } |
350 | 0 | answer.mantissa = mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1); |
351 | 0 | return answer; |
352 | 0 | } Unexecuted instantiation: arrow_vendored::fast_float::adjusted_mantissa arrow_vendored::fast_float::compute_float<arrow_vendored::fast_float::binary_format<float> >(arrow_vendored::fast_float::decimal&) Unexecuted instantiation: arrow_vendored::fast_float::adjusted_mantissa arrow_vendored::fast_float::compute_float<arrow_vendored::fast_float::binary_format<double> >(arrow_vendored::fast_float::decimal&) |
353 | | |
354 | | template <typename binary> |
355 | 0 | adjusted_mantissa parse_long_mantissa(const char *first, const char* last) { |
356 | 0 | decimal d = parse_decimal(first, last); |
357 | 0 | return compute_float<binary>(d); |
358 | 0 | } Unexecuted instantiation: arrow_vendored::fast_float::adjusted_mantissa arrow_vendored::fast_float::parse_long_mantissa<arrow_vendored::fast_float::binary_format<float> >(char const*, char const*) Unexecuted instantiation: arrow_vendored::fast_float::adjusted_mantissa arrow_vendored::fast_float::parse_long_mantissa<arrow_vendored::fast_float::binary_format<double> >(char const*, char const*) |
359 | | |
360 | | } // namespace fast_float |
361 | | } // namespace arrow_vendored |
362 | | #endif |