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Objective
To automate the generation of three validated nephrometry scoring systems on preoperative computerised tomography
(CT) scans by developing artificial intelligence (AI)-based image processing methods. Subsequently, we aimed to evaluate
the ability of these scores to predict meaningful pathological and perioperative outcomes.

Patients and Methods
A total of 300 patients with preoperative CT with early arterial contrast phase were identified from a cohort of 544
consecutive patients undergoing surgical extirpation for suspected renal cancer. A deep neural network approach was used
to automatically segment kidneys and tumours, and then geometric algorithms were used to measure the components of the
concordance index (C-Index), Preoperative Aspects and Dimensions Used for an Anatomical classification of renal tumours
(PADUA), and tumour contact surface area (CSA) nephrometry scores. Human scores were independently calculated by
medical personnel blinded to the AI scores. AI and human score agreement was assessed using linear regression and
predictive abilities for meaningful outcomes were assessed using logistic regression and receiver operating characteristic
curve analyses.

Results
The median (interquartile range) age was 60 (51–68) years, and 40% were female. The median tumour size was 4.2 cm and
91.3% had malignant tumours. In all, 27% of the tumours were high stage, 37% high grade, and 63% of the patients
underwent partial nephrectomy. There was significant agreement between human and AI scores on linear regression
analyses (R ranged from 0.574 to 0.828, all P < 0.001). The AI-generated scores were equivalent or superior to human-
generated scores for all examined outcomes including high-grade histology, high-stage tumour, indolent tumour,
pathological tumour necrosis, and radical nephrectomy (vs partial nephrectomy) surgical approach.

Conclusions
Fully automated AI-generated C-Index, PADUA, and tumour CSA nephrometry scores are similar to human-generated scores
and predict a wide variety of meaningful outcomes. Once validated, our results suggest that AI-generated nephrometry scores
could be delivered automatically from a preoperative CT scan to a clinician and patient at the point of care to aid in decision
making.
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Introduction
Starting with the design and publication of the R.E.N.A.L.
(radius, exophytic/endophytic, nearness to collecting system,
anterior/posterior location, location relative to polar lines)
and PADUA (Preoperative Aspects and Dimensions Used for
an Anatomical classification of renal tumours) systems in
2009, nephrometry scoring systems have become important
tools for describing renal mass complexity [1,2]. Initially
intended to enhance surgeon communication and allow
researchers to effectively measure and account for surgical
difficulty, multiple studies have since demonstrated that
nephrometry scores can be used to predict important
oncological outcomes including histological grade,
pathological staging, and patient survival [3,4]. Despite clear
value to both risk assessment and surgical decision-making,
widespread clinical adoption has been limited by
interobserver variability and required time investment by
busy clinicians [5,6]. Any technology that allows for
mitigation of these two barriers would allow for wider spread
adoption of nephrometry scoring systems and provide
substantial value to Urologists.

The application of deep learning (DL), a subfield of machine
learning (ML), to healthcare-related problems promises added
value for questions that involve high-dimensional data [7–9].
Within the field of Urological Oncology, many impressive
applications of DL thus far have involved renal cancer. For
instance, DL has demonstrated an ability to reliably
differentiate renal tumour subtypes and predict functional
postoperative outcomes [10–13]. We have previously
described a novel DL process for fully automated semantic
segmentation of kidneys and kidney tumours [13]. This fully
automated process promises significant potential benefits to
researchers looking to investigate radiomic features on large
scales not conducive to manual input. However, the potential
advantages of automation in kidney cancer imaging research
go beyond computer-generated tumour segmentation. For
example, as a part of the previously described work, our
group assessed the ability of artificial intelligence (AI)-
generated R.E.N.A.L. nephrometry scores to predict
pathological outcomes in patients undergoing partial (PN) or
radical nephrectomy (RN) for renal mass. We found that AI-
generated scores were highly correlated with scores calculated
by human experts and could deduce the presence of
malignancy, grade, stage, and necrosis just as reliably as
human experts [14].

Despite the importance of this initial experience, it involved
only one of many well-established nephrometry scores. In
order for fully automated/AI-generated nephrometry scores
and risk assessment models to obtain widespread adoption,
demonstration of generalisability across multiple unique
models is important. It was therefore our objective to
develop, demonstrate, and validate the predictive utility of

fully automated versions of multiple additional nephrometry
score systems including the centrality index (C-Index),
tumour contact surface area (CSA), and PADUA.

Patients and Methods
Cohort

Following ethics board approval of protocol code
1611M00821 at the University of Minnesota – Twin Cities,
544 consecutive adult patients undergoing extirpative surgery
for a renal tumour at a single institution between 2010 and
2018 were identified. This cohort was used to host the
previously reported KiTS19 international segmentation
challenge. Overall inclusion and exclusion criteria for this
cohort is based on a previously published KiTS19 (kidney
and kidney tumour segmentation challenge) protocol [13].
Briefly, patients with a tumour thrombus were excluded (27
patients), as well as patients without an available arterial
phase CT scan preoperatively (217 patients). Following the
application of these exclusion criteria, a total of 300 patients
remained. If a patient had more than one tumour removed,
the largest tumour removed was used to determine
nephrometry scores, as well as for pathological outcome
determination. The full KiTS19 cohort, with scans,
segmentations, clinical details, and outcomes, is now publicly
available at https://kits-challenge.org/. Tumours of the 300
selected patients were subsequently assigned both AI-
generated and human-calculated PADUA, C-Index, and
tumour CSA scores based on the following process.

Artificial intelligence Scoring (AI Scores)

The following process was used to generate fully automated
nephrometry scores from Digital Imaging and
Communications in Medicine files without human
intervention at any step. The process is summarised in Fig. 1.

Creating the ‘ground truth’ for DL and Selection of
Fully Automated Segmentation Algorithm

Each slice of the arterial phase of included CT scans was
manually annotated as ‘kidney’, ‘kidney tumour’, or
‘background’ by specialised medical personnel. The resulting
dataset of almost 50 000 individual axial slices is referred to
as the ‘ground truth’, providing the training material for the
DL algorithms and the basis of extraction of nephrometry
scores. These ground truth manual CT segmentations were
then used to host an international segmentation challenge
[13], with a single algorithm declared as the winner by
demonstrating the highest level of fidelity to the ground truth
segmentations [15]. Subsequently, this algorithm was used as
the basis for generation of fully automated segmentations
masks. As previously published, AI-generated segmentations
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provided segmentation masks similar to human-generated
segmentations with a Sørensen-Dice coefficient of 0.92 [14].
An important potential source of bias within this process was
the fact that the winning algorithm was trained on 210 of the
300 CT scans used in our study, introducing the possibility of
biased predictions. Fortunately, since the winning team’s
method was based on an ensemble of five models constructed
with five-fold cross-validation, we were able to use the
individual models of this ensemble to obtain unbiased
segmentation predictions for each of the 210 cases in the
training cohort. From these masks, we extracted the
components for nephrometry scores for the 300 patients
described above. A more detailed methodology of the
segmentation process was previously published [14].

Collecting Nephrometry Score Components from
Segmented CT Scans

Preoperative Aspects and Dimensions Used for an Anatomical
classification The six components of the PADUA score were
generated from the fully automated segmentation masks using
the following processes.

1. Location relative to sinus lines: renal sinus fat was defined
as central voxels within the kidney segmentation with

attenuation of low enough radiodensity to represent
adipose tissue (≤�30.0 Hounsfield units [HU]). The top-
most and bottom-most axial slices of the segmentation
mask that contain at least one such voxel are identified
and used as the sinus lines. The fraction of tumour voxels
found on these slices or the slices between them is then
returned. If >50% of tumour voxels were found between
these lines, a score of 2 was assigned. Otherwise, a score of
1 was assigned.

2. Location relative to medial or lateral rim: the set of voxels
in the kidney region that are adjacent to the ‘background’
region (perinephric fat) were determined and defined as
the ‘rim’. Throughout this paper, ‘adjacent’ voxels are
defined as lying within each other’s 8-neighbourhood (i.e.,
touching either side to side or at the corners) in the axial
plane. The third dimension is not considered because
variations in slice thickness could cause unintended
artefacts. All pairs of rim and tumour voxels were
compared to find the pair that are closest together, which
represents the rim point nearest to the tumour. The
position of this rim point was then compared with both
the left–right position of the centroid of the affected
kidney and the relative position of the overall left right
midpoint of the axial slice. If the closest rim point was

Fig. 1 Schematic representation demonstrating AI-generated segmentation if CT images, geometric algorithmic calculation of fully automated

nephrometry scores, and corresponding human process.
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located between the centroid of the kidney and the overall
midline, the tumour was designated ‘medial’, and a score
of 2 was assigned, otherwise it was given a designation of
‘lateral’ and a score of 1 was assigned.

3. Sinus involvement: the voxels in the aforementioned sinus
region were considered and compared to voxels in the
tumour region. If any sinus region voxels were located
adjacent (defined as above) to one or more tumour region
voxels, the tumour was said to be involving the renal sinus
and a score of 2 was assigned. Otherwise, the tumour was
said to not be involving the renal sinus and a score of 1
was assigned.

4. Collecting system involvement: the urinary collecting
system (UCS) is generally understood to be bordered by
sinus fat. We therefore defined the UCS as voxels within
the predetermined area of sinus fat with attenuation
exceeding the previously mentioned HU threshold (i.e.,
significantly brighter than the sinus fat). Similarly to renal
sinus involvement, if UCS voxels were found adjacent
(defined as above) to tumour voxels, the tumour was said
to be involving the UCS and a score of 2 was assigned,
otherwise a score of 1 was assigned.

5. Endophycity: for every axial slice that contained tumour
voxels, the convex hull of the kidney region excluding the
tumour was identified. For every tumour voxel, it was then
recorded whether it lied inside (endophytic) or outside
(exophytic) of this convex hull. Endophytic proportions
were then quantised, with scores of 1, 2 or 3 assigned for
endophytic proportions of <50%, 50–100%, and 100%,
respectively.

6. Size: first, connected component analysis was used to identify
the largest contiguous region of voxels labelled ‘tumour’ prior
to the calculation of size, so any false-positive tumour voxels
lying elsewhere in the image are not considered. Next, we
identified the two tumour region voxels that were furthest
apart and recorded this distance. Traditional PADUA cut-offs
were then used to assign a score of 1, 2, or 3 for distances of
<4, 4–7, and >7 cm, respectively.

Concordance Index The C-Index is calculated as the ratio of
the distance between the centre of the mass and the centre of
the kidney (centrality) to the radius of the tumour as a
whole. The two components of this formula are generated
from the automated segmentation masks using the following
processes.

1. Centrality: centroids are calculated for the tumour region
and the affected kidney region. Here, the affected kidney
region is the union of the voxels labelled kidney and
those labelled tumour. The distance between those
centroids is calculated and recorded as the centrality
value.

2. Radius: the distance between every pair of voxels in the
tumour region is calculated using a simple vector norm.

The maximum is returned. This value is then divided by
two to obtain the radius value

Tumour contact surface area First, we found all voxels on the
tumour region that border at least one voxel on the kidney
region. The surface area of the resulting thin ‘surface’ region
is determined by first transforming that region to a mesh
object, and then simply summing the areas of the set of
triangles that comprise that mesh. The result is divided by
two to account for the fact that the thin surface object has
both a front and back surface. This computation was
performed using the implementation provided by the
‘PyRadiomics’ package [16].

Human Scoring

Traditional human-calculated nephrometry scores were
assigned to each tumour by a team of three trained medical
personnel blinded to the AI score results. A single score was
generated for each nephrometry score on each CT scan. All
personnel were trained in the three different nephrometry
scoring systems by a fellowship trained Urological Oncologist
(C.J.W.) prior to assigning nephrometry scores. All values
were recorded as originally described and currently
implemented in clinical practice [2,17,18].

Statistical Analysis

Simple linear regression analyses were performed to assess
correlation between AI and human scores for tumour CSA
and C-Index, and Pearson correlation coefficients (R) were
calculated. For the ordinal PADUA score, Spearman’s rank
correlation coefficient was utilised to evaluate correlation
between AI and human scores and reported as q (rho).
Receiver operating characteristic (ROC) curves were
developed from univariate logistic regression models to
evaluate the discriminatory ability of AI and human scores to
determine each outcome of interest. All statistical tests were
performed on samples with N far greater than 30
observations, thus the central limit theorem was applied, and
parametric statistical tests were deemed appropriate despite
non-normality of sample data. Outcomes of interest included
high stage (pathological [p]T Stage 3–4), high grade
(Fuhrman Grade 3–4), indolent tumour (benign, or low stage
and low grade), pathological tumour necrosis, surgical
procedure, and high-grade complication as measured by the
Clavien–Dindo classification. Notably, only patients
undergoing PN were included in analyses of the nephrometry
scores’ ability to predict high-grade complications, as this is
the context of the original development of nephrometry
scoring systems. Areas under the ROC curves (AUCs) with
CIs were calculated for both AI and human scores and
plotted for comparison. R version 4.2.1 (R Foundation for
Statistical Computing, Vienna, Austria), using the ‘R
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commander’ package and ‘R commander ROC’ plug-in, was
used for all statistical analyses.

Results
Characteristics of the Cohort

The baseline characteristics of the KiTS19 cohort are shown
in Table 1. Of 300 patients, the median (interquartile range
[IQR]) age was 60 (51–68) years, and 240 (60%) were males.
The median (IQR) body mass index (BMI) was 29 (26–35)
kg/m2. In all, 188 patients (63%) underwent PN while the
remaining 112 (37%) underwent RN. A laparoscopic or

robotic approach was utilised in 221 (73%) of surgeries. Of
the removed tumours, 275 (92%) were malignant; 75 (27%)
were high stage (pT3–T4), 92 (37%) were high grade
(Fuhrman Grade 3–4), and 69 (23%) contained pathological
tumour necrosis. The median (IQR) diameter was 4.2 (2.6–
6.1) cm. The mean (SD) estimated GFR change at ≥3 months
after surgery was �13 (15.3) mL/min/1.73 m2. Patients
undergoing RN experienced a mean change of
�24 mL/min/1.73 m2 while those undergoing PN
experienced a change of just �6 mL/min/1.73 m2. The mean
(SD) AI and human PADUA scores were 9.07 (1.58) and
9.13 (1.83), respectively. The mean (SD) AI and human C-
Index scores were 1.86 (1.42) and 2.11 (1.38), respectively.
The mean (SD) AI and human tumour CSA scores were
30.77 (26.04) and 54.01 (68.20), respectively.

Correlation of AI and Human Scores

There was strong correlation between AI and human scores
for all three examined nephrometry scores. The AI PADUA
was significantly associated with the human PADUA
(q = 0.571, P < 0.001), the AI C-Index was significantly
associated with the human C-Index (R = 0.828, P < 0.001),
and the AI tumour CSA was significantly associated with the
human tumour CSA (R = 0.757, P < 0.001). Least squares
lines based on linear regressions for all three nephrometry
scores can be found in Fig. 2. Within the PADUA score
components, size was the most strongly correlated between
the human and AI scores (q = 0.87, indicating strong
correlation), while collecting system involvement was the
weakest correlation (q = 0.245, indicating strong correlation).
Details can be found in Table S1.

Comparison of Predictive Utility of AI and Human
Scores

Table 2 summarises the discriminatory ability of the AI and
human versions of the three nephrometry scores in predicting
the previously mentioned pathological and surgical outcomes.
Figure 3 shows the ROC curves for each score and outcome
besides high-grade complication. The AI C-Index
demonstrated a greater AUC than the human C-Index in
predicting high-grade tumour, high-stage tumour, indolent
tumour, pathological tumour necrosis, and surgical approach.
The AI tumour CSA similarly demonstrated a greater AUC
than the human tumour CSA in predicting high-grade
tumour, high-stage tumour, indolent tumour, pathological
tumour necrosis, and surgical approach. The AI PADUA
demonstrated a greater AUC than the human PADUA in
predicting pathological tumour necrosis and similar AUCs in
predicting all other examined outcomes.

The subset of patients undergoing PN (188 in total) were
separately examined to determine the ability of AI- and

Table 1 Baseline characteristics (N = 300).

Characteristic Value

Gender, n (%)
Female 120 (40)
Male 179 (60)
Transgender (male to female) 1 (0.3)

Age, years, median (IQR) 60 (51–68)
Tumour diameter, cm, median (IQR) 4.20 (2.60–6.12)
BMI, kg/m2, median (IQR) 29 (26–35)
Baseline estimated GFR, mL/min/1.73 m2,
median (IQR)

72 (60–81)

AI C-Index score, mean (SD) 1.86 (1.42)
Human C-Index score, mean (SD) 2.11 (1.38)
AI tumour CSA score, mean (SD) 30.77 (26.04)
Human tumour CSA score, mean (SD) 54.01 (68.20)
AI PADUA score, mean (SD) 9.07 (1.58)
Human PADUA score, mean (SD) 9.13 (1.83)
Malignant renal mass, n (%) 275 (92)
Pathological T stage, n (%)
0 24 (8.0)
1a 121 (40)
1b 60 (20)
2a 15 (5.0)
2b 5 (1.7)
3 8 (2.7)
3a 62 (21)
4 5 (1.7)

Tumour necrosis, n (%) 69 (23)
Tumour grade, n (%)
0 25 (9.3)
1 33 (12)
2 119 (44)
3 66 (25)
4 26 (9.7)

Surgical technique, n (%)
Laparoscopic 49 (16)
Open 79 (26)
Robotic 172 (57)

Nephrectomy type, n (%)
PN 188 (63)
RN 112 (37)

Estimated blood loss, mL, median (IQR) 200 (100–400)
Length of hospital stay, days, median (IQR) 3.00 (2.00–4.00)
Postoperative complication by Clavien–Dindo Grade, n (%)
Any 92 (31)
I 45 (15)
II 24 (8.0)
III 15 (5.0)
IV 5 (1.7)
V 2 (0.7)
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human-generated nephrometry scores to achieve the original
intention of nephrometry scoring systems: predicting high-
grade complications. The results of univariate logistic
regression analyses on this subset for all six nephrometry
scores can be found in Table 2. None of the examined
nephrometry scores were significant predictors of high-grade
complications following PN.

Discussion
Through the use of fully automated semantic segmentation
followed by employment of three fully automated algorithms
for calculation of different nephrometry scores, we were able
to demonstrate a method for calculation of multiple unique
nephrometry scores that required no human input. As

previously reported, AI-generated segmentations provided
segmentation masks that were impressively similar to human-
generated segmentations (Sørensen-Dice coefficient = 0.92)
[14]. Importantly, we were able to demonstrate that the
PADUA, C-Index, and tumour CSA scores generated from
these segmentations (also in a fully automated fashion)
provide equivalent, and in many cases superior, predictive
utility for clinical and pathological outcomes of interest.

Despite the relatively common inclusion of nephrometry
scoring systems in renal mass research investigation, their
clinical implementation has lagged behind. Unfortunately,
despite efforts to categorise variables and simplify scoring
systems, the largest impediment to widespread clinical use
remains clinician time investment. Fortunately, the utilisation

Fig. 2 Correlation of AI and human nephrometry scores with least squares regression lines.

Table 2 Nephrometry scores predicting clinical outcomes

AI AUC (95% CI) P Human AUC (95% CI) P

C-Index
High stage (pT3–4) 0.79 <0.001 0.76 <0.001
High grade (Fuhrman Grade 3 or 4) 0.75 <0.001 0.71 <0.001
Indolent (benign, or low grade and low stage) 0.76 <0.001 0.73 <0.001
Tumour necrosis 0.8 <0.001 0.76 <0.001
Surgical approach (RN vs PN) 0.87 <0.001 0.85 <0.001
High-grade complication (PN only) 0.54 (0.34–0.74) 0.722 0.58 (0.40–0.75) 0.491
Tumour CSA
High stage 0.76 <0.001 0.73 <0.001
High grade 0.71 <0.001 0.69 <0.001
Indolent 0.74 <0.001 0.69 <0.001
Tumour necrosis 0.81 <0.001 0.75 <0.001
Surgical approach 0.86 <0.001 0.83 <0.001
High-grade complication (PN only) 0.50 (0.33–0.68) 0.508 0.52 (0.35–0.69) 0.494
PADUA score
High stage 0.65 <0.001 0.71 <0.001
High grade 0.63 <0.001 0.64 <0.001
Indolent 0.64 <0.001 0.67 <0.001
Tumour necrosis 0.74 <0.001 0.71 <0.001
Surgical approach 0.71 <0.001 0.71 <0.001
High-grade complication (PN only) 0.54 (0.37–0.72) 0.660 0.54 (0.35–0.72) 0.531
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of fully automated nephrometry scores promises to mitigate
this issue while improving upon predictive utility. It is easy to
envision a day where radiology reports for CT scans
identifying a renal mass will include estimates of risk for
pathological variables such as histological grade based on
automated nephrometry score calculations that require
minimal clinician or radiologist time investment. As
automation and AI begin to play a larger role in diagnostic
and prognostic risk assessment, it is vital that sufficient
intermediary steps are taken to help clinicians trust
predictions made by AI systems. We believe that a
demonstration that a fully automated segmentation and score
calculation process can generate prognostically useful scores
for four completely different nephrometry scoring systems
(R.E.N.A.L. was previously described) is an important step in
this journey.

In addition to benefits to clinical implementation, automation
of nephrometry scores carries important implications for
continued renal mass and RCC research investigation.
Widespread standardisation of renal mass complexity
measurements within research efforts remains an important

goal. Nephrometry scoring systems are the best tool available
for this effort but are uncommonly deployed on very large-
scale data sets because of the extensive time investment
required. Fully automated nephrometry scores promise
important improvements in efficiency and uniformity of
kidney cancer research. With current methods, manually
calculating nephrometry scores on a multi-thousand-patient
renal mass dataset requires hundreds of person-hours. If a
fully automated system, such as ours, is validated and
popularised, a similar data set can be generated in 1–2 days.
In addition to efficiency considerations, the use of an
automated system immediately solves another inherent
problem for nephrometry score-related research: interobserver
variability in interpretation and measurement. As long as the
algorithms used for segmentation and score calculation are
the same, interobserver variability between systems is
impossible.

Improvement in efficiency of calculation of imaging-related
predictors of kidney cancer outcomes is particularly
important in the current environment of AI-based
investigation. The unique value of neural network approaches

Fig. 3 Receiver operating characteristic curves (with AUCs) for AI- vs human-generated nephrometry scores predicting pathological and perioperative

outcomes.
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to data examination is based on their ability to identify
nuances between cases. This ability can only be realised with
a sufficient sample size to capture how these nuances in
variation relate to outcomes of interest [19]. While there is
no single answer to the quantity of training data required for
a given problem (i.e., predicting kidney cancer oncological
outcomes), a higher volume of high-quality data generally
produces superior results. Fully automated imaging evaluation
of renal masses is vital for the development of research
investigation in this space. In summary, the ability to
generate multiple validated nephrometry scores in an
automated fashion for large-volume data sets promises to
improve the consistency, quality, and overall volume of renal
mass complexity data for the field as a whole.

Our study is not without limitations. First, our algorithms
could not generate all three nephrometry scores for nine of
300 cases (3%) due to an inability to find a lesion of interest.
Whether these outliers were due to image quality issues,
motion artefact, or other problems was not investigated. While
it is important to recognise the technological limitations of an
automated system, we believe a 3% failure rate is acceptable at
this stage. Additionally, the AI algorithm used for
segmentation was trained on a portion of the 300 involved CT
scans, introducing the possibility of bias. However, use of the
single algorithm (of five that make up the wider model) that
was not exposed to each training set CT during five-fold cross
validation reduces this bias. In addition, neither nephrometry
scores nor clinical/pathological outcomes were involved in the
training. Regardless, validation of these results on an
independent data set is an important next step. Another
potential limitation was our single-centre experience, as
surgery was done at a single institution with >85% Caucasian
patients and almost 50% harbouring clinical obesity (BMI
>30 kg/m2), which has important implications for
generalisability. We evaluated for demographic (age, gender,
BMI, race) effects on AI- to human-score differences and only
found a weak (R2 = 0.058, P < 0.001) relationship between
BMI and PADUA score. While this provides some
information that demographic factors are likely not playing a
major role in our results, it is nevertheless important to
consider for those who might have a significantly different
patient population and is an important area for future study.
Adding to generalisability, however, is the fact that CT scan
images were collected in >70 medical facilities. We also utilised
consecutive patients and thus accepted all tumour sizes,
locations, and types, which reflects real-world practice. Finally,
all segmentations and nephrometry score calculations were
based on arterial phase CT scans. While this is not always
available in real-world practice (often only
nephrographic/venous phases are provided), using the arterial
phase was necessary in order to best standardise the training set
for the segmentation challenge. Further efforts on segmentation
using venous and urographic phases are underway.

Conclusions
Fully automated kidney and tumour segmentation followed by
geometric analysis is able to generate multiple nephrometry
scores that are highly correlated with human-calculated scores.
These scores were able to meet or exceed the predictive utility of
human-calculated scores for clinically relevant outcomes. This
has important implications for nephrometry score calculation
efficiency, elimination of interobserver variability, and
development of additional ML-based radiological investigation
in the future. External validation of these fully automated results
is necessary prior to full clinical implementation.
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Additional Supporting Information may be found in the
online version of this article:

Table S1. Correlation of individual PADUA components
between human and AI scores.
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